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Abstract

Algebraic multigrid (AMG) is a popular and effective solver for systems of linear
equations that arise from discretized partial differential equations. While AMG has been
effectively implemented on large scale parallel machines, challenges remain, especially
when moving to exascale. In particular, as problem size increases, so does the number
of levels in the hierarchy of coarse grids with the pernicious result that coarse grid
operators tend to become denser further down in the hierarchy. This produces denser
communication patterns than existed on fine grids and as a result, as problem size
increases, denser coarse grid matrices are produced, and the communication pattern
and overall parallel AMG scheme become less efficient. This increase in density is due
to the standard Galerkin coarse grid operator, PTAP , where P is the prolongation
(i.e., interpolation) operator. Typical choices for P couple most distance two and many
distance three connections in the graph of A, and this results in the increasing fill. For
example, the coarse grid stencil size for a simple 3D 7-point finite differencing approxi-
mation to diffusion can increase into the thousands on present day machines, causing
an associated increase in communication costs. We therefore consider algebraically
truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity
pattern of the non-Galerkin coarse grid is determined through the fine grid matrix
graph, which indicates important distance two and three connections that should be
maintained on the coarse grid. Second, the nonzero entries are determined by collapsing
the stencils in the Galerkin operator using traditional AMG techniques. The result is
a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG
solve phase times.

1 Introduction

The goal of this paper is to introduce a non-Galerkin coarse grid strategy that improves the
parallel performance of algebraic multigrid (AMG) [4, 12]. AMG is of interest because it is
a popular and effective solver of large sparse linear systems in parallel, by virtue of being
scalable or optimal and solving a linear system with N unknowns with only O(N) work.
Consider solving the linear system

Ax = b, (1)

where x,b ∈ Rn. For the problems considered here, A ∈ Rn×n is assumed to be a symmetric
and positive definite (SPD) matrix.

There are two main components to a multigrid method: the smoother (or relaxation
method) and the coarse grid correction step. The coarse grid correction step involves
operators that transfer information between the fine and coarse “grids”, denoted more
generally by the space Rn and the lower dimensional (coarse) vector space Rnc . We focus on
classical Ruge-Stüben style AMG (RS-AMG) [12], which constructs the coarse space using
a disjoint F/C splitting of the fine grid unknowns, with the C-points forming the coarse
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grid. We let P : Rnc → Rn be the interpolation (or prolongation) operator, and generally
the restriction operator is taken to be R = PT . Optimality is achieved when smoothing
and coarse grid correction are complementary. In the classical setting of scalar elliptic
problems, this means that the smoother is a simple iterative algorithm like Gauss-Seidel,
which is effective at reducing high frequency error. The remaining low frequency error is
then accurately represented and efficiently eliminated on coarser grids via the coarse grid
correction step. The result, is that all error frequencies are uniformly damped with a linear
cost. The two-grid multigrid method for solving (1) is then defined as follows:

Relax ν1 times on Ax = b. (2a)
Correct x← x + P (RAP )−1R(b−Ax). (2b)
Relax ν2 times on Ax = b. (2c)

In practice, we use a multilevel method to solve (1) by recursively applying algorithm (2) to
the correction step in (2b). The proposed work considers replacing the Galerkin coarse-grid
operator RAP with a sparser approximation Ac, which maintains the AMG convergence
rate, but improves parallel efficiency.

Controlling the sparsity pattern of RAP is important because AMG (including the target
BoomerAMG package in hypre) produces coarse grids with a maximum coarse grid stencil
size that grows with problem size. This is problematic in parallel, because as density increases
on coarser levels, standard matrix partitioning couples processors that were not coupled on
previous, finer levels. Thus, the communication pattern also becomes denser as problem size
increases, with the risk that for exascale problems, the maximum coarse grid stencil size
may produce unscalable communication patterns. This increase in communication is well
documented [14, 6]. In particular, the work [6] describes how even the best current practices
in hypre still result in a sharp increase in number of messages and in overall communication
cost when moving to coarse grids. For example, the model diffusion problem considered
in [6] resulted in a growth from 6 MPI sends on the finest level to 245 MPI sends on the
worst coarse grid for a machine with 65K cores. The result was that the time spent on some
coarse levels in the hierarchy, despite being much smaller in terms of number of nonzeros
and number of unknowns, was actually larger than the time spent on the finest level.

The need for reductions in coarse grid sparsity has been a main driver for research-based
improvements to hypre. Classical parallel AMG (i.e., classical modified interpolation and
Falgout coarsening [7]) is indeed a useful and powerful method, but at large numbers of
cores, the communication cost ruins what is otherwise a computationally optimal method.
As an example, consider Figure 1, where the time to solution for classical parallel AMG
is plotted for the simple 3D 7-point finite difference diffusion operator. A weak scaling
study is done with 25,000 unknowns per core on an Intel cluster with a fast Infiniband
QDR interconnect, and the time grows dramatically with core count. This result led to
the important developments of aggressive coarsening [14] and extended interpolation [13],
which lead in this experiment to a reduction in coarse grid stencil size from the thousands to
the hundreds. The resulting time to solution is also commensurately reduced, in large part
due to reduced communication, as indicated by the “Best Practices AMG” plot in Figure 1.
However, even with these advancements, the time to solution is still growing in Figure 1,
leaving us room for improvement through communication reducing strategies.

Our strategy is to further reduce the communication costs by replacing RAP with a
sparser approximation. While we focus on a purely algebraic approach, non-Galerkin methods
have already been explored in settings where geometric information is used to aid the method
[18, 1] in choosing sparsity patterns and matrix coefficients. This previous work already
indicates that a significant reduction in coarse grid stencil size is possible without a serious
reduction in multigrid convergence. We note that the work [3] discusses a purely algebraic
non-Galerkin coarse grid approach, but requires a prohibitively large computational cost.
More recent work [15] has followed a similar path to ours in sparsifying coarse grid operators,
and while not fully developed or tested in parallel, shows much promise.
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Figure 1: AMG weak scaling as motivation: parallel timings for classical parallel AMG and current
best practices for a simple model diffusion problem

Our overall strategy is to begin with an existing AMG method, and to remove entries
from the Galerkin operator each time a new level in the hierarchy is formed. Thus our
goal is to have sparser coarse grid operators than given by Galerkin coarse grids and to
also maintain AMG convergence when compared to the corresponding Galerkin coarse grid
method. The algorithm consists of two phases. The first phase chooses a sparsity pattern for
the new coarse grid operator, and the second phase removes or “collapses” entries in PTAP
that lie outside of that sparsity pattern. While we focus on the hypre package, the proposed
method has also been briefly and successfully tried in the smoothed aggregation (SA) [17]
setting, and we believe that the approach is general enough to be applicable to most parallel
AMG codes.

In Section 2, we first provide a mathematical motivation for our approach. In Section 3,
we state the resulting algorithm. In Section 4, we describe a near optimal non-Galerkin coarse
grid operator, and compare our method to the near optimal method for model diffusion
problems. In Section 5, we give serial results for a variety of diffusion and elasticity problems,
followed by parallel results for diffusion problems.

2 Mathematical Motivation

In this section, we provide the mathematical motivation for our approach. Assume that an
AMG method is applied to an SPD matrix, A. During construction of an AMG hierarchy,
the Galerkin coarse grid, Ag = RAP , has been computed, but the rows contain too many
nonzeros, or the number of nonzeros per row is growing too quickly. Thus, we seek to replace
Ag with a sparser approximation, Ac, that is spectrally equivalent, i.e.,

∀x ∈ Rn, ∃α, β ∈ R+ such that α ≤
〈
A−1
c Agx, x

〉
≤ β, (3)

with α and β both close to 1. However, we show that minimizing∥∥I −AcA−1
g

∥∥
2

(4)

is a sufficient heuristic to both target spectral equivalence and to minimize the eventual
multigrid convergence factor.

We begin by restating previous results [9], that assume Ac is SPD. Define the two-grid
error propagator for AMG as

ETG = (I −M−TA)ν(I − PK−1PTA)(I −M−1A)ν , (5)

where K is the coarse grid matrix and M defines the relaxation method, e.g., the diagonal of
A in the case of Jacobi. If K = Ag, then equation (5) is the standard Galerkin two-grid error
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propagator with symmetric pre- and post-relaxation. The asymptotic AMG convergence
factor is the spectral radius ρ(ETG), and is our starting point for developing the target Ac.

Next, we denote the preconditioner BTG for A induced by (5) with K = Ag as

ETG = I −B−1
TGA. (6a)

If K = Ac, then this perturbed coarse grid operator yields

EPTG = I −B−1
PTGA. (6b)

The associated convergence factors are then

ρ(ETG) = max(λmax(B−1
TGA)− 1, 1− λmin(B−1

TGA)) (7a)

ρ(EPTG) = max(λmax(B−1
PTGA)− 1, 1− λmin(B−1

PTGA)), (7b)

where we use the fact that A, BPTG and BTG are SPD and that the eigenvalues of (B−1
PTGA)

and (B−1
TGA) are therefore all real and positive.

Theorem 2.1. Define EPTG and BTG as above and let

θ =
∥∥I −AcA−1

g

∥∥
2
. (8)

If θ < 1 and both Ag and Ac are SPD, then

ρ(EPTG) ≤ max
(
λmax(B−1

TGA) · 1
1− θ

− 1, 1− λmin(B−1
TGA) · 1

1 + θ

)
. (9)

Proof. Importantly, the perturbed two-grid convergence factor (7b) is bounded in terms of
the Galerkin approach (7a) and an error term in [9], yielding

λmax(B−1
PTGA) ≤λmax(B−1

TGA) · max(λmax(A−1
c Ag), 1), (10a)

λmin(B−1
PTGA) ≥λmin(B−1

TGA) · min(λmin(A−1
c Ag), 1). (10b)

Overall, we desire to maximize min(λmin(A−1
c Ag), 1) from (10b), but simultaneously minimize

max(λmax(A−1
c Ag), 1) from (10a). We assume that B−1

TGA is fixed.
Now, we move the inverse from Ac to Ag, which will be convenient later when we specify

the sparsity pattern of Ac. Since Ag and Ac are SPD, then λ(A−1
c Ag) > 0 and λ(A−1

g Ac) > 0,
and we have

max(λmax(A−1
c Ag), 1) = max

(
1

λmin(A−1
g Ac)

, 1
)

(11a)

=
1

min(λmin(A−1
g Ac), 1)

≡ 1
µmin

, (11b)

and analogously,

min(λmin(A−1
c Ag), 1) =

1
max(λmax(A−1

g Ac), 1)
≡ 1
µmax

. (11c)

So, we want to maximize µmin while simultaneously minimizing µmax. This is achievable by
considering the connection to the 2-norm and using the assumption that Ag and Ac are SPD,

ρ(I −A−1
g Ac) = max

(
λmax(A−1

g Ac)− 1, 1− λmin(A−1
g Ac)

)
, (12a)

= max (µmax − 1, 1− µmin) (12b)

≤
∥∥I −A−1

g Ac
∥∥

2
=
∥∥I −AcA−1

g

∥∥
2
. (12c)
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The eventual algorithm focuses on minimizing (12a), which first targets λmax < 2, and then
minimizes λmax and λmin with equal weight. With µmax − 1, and 1− µmin both bounded by
θ < 1, we can go back to (10a) and (10b) to yield

λmax(B−1
PTGA) ≤λmax(B−1

TGA) · 1
1− θ

, (13a)

λmin(B−1
PTGA) ≥λmin(B−1

TGA) · 1
1 + θ

, (13b)

This leads (by substituting into (7b)) to the final statement, which yields a convergence rate
bound that deteriorates with respect to ETG as θ increases.

Equation (9) is the goal, because it expresses the final two-grid convergence rate in terms
of the convergence rate of the standard Galerkin coarse grid and θ a term that measures
spectral equivalence between Ac and Ag. The algorithm will seek to make θ close to 0.

2.1 Heuristics

In this section, we further motivate the algorithm heuristics based on Theorem 2.1. Our
basic goal is to construct an operator Ac with a given sparsity pattern such that θ is small.
To state this more rigorously, we first introduce some notation. Define a matrix nonzero
pattern (or sparsity pattern) as a set of tuples {(i, j)} and denote the space of matrices with
given sparsity pattern N by

N ≡ {A ∈ Rn×n : aij 6= 0 only if (i, j) ∈ N}. (14)

Similarly, define a vector nonzero pattern as a set of indices {i} and denote the space of
vectors with given nonzero pattern I by

I ≡ {x ∈ Rn : xj 6= 0 only if j ∈ I}. (15)

Let Nc and Ng represent the sparsity patterns of Ac and Ag, respectively. Then, our aim is to
define Nc ⊆ Ng and Ac ∈Nc such that θ is small. We begin by stating Ac as a perturbation
of Ag, i.e., let Ac ∈Nc, Ag ∈Ng, E ∈Ng, and

Ac = Ag + E, (16a)∥∥I −AcA−1
g

∥∥
2

=
∥∥EA−1

g

∥∥
2

= θ. (16b)

Next, we develop heuristics for (16b) intended to reduce θ. First, we develop a heuristic for
“mid-range” or high energy modes, x,

Agx = λx, such that ‖x‖2 = 1. (17a)

Our simple row-wise heuristic uses Gershgorin rings, i.e., we enforce

‖ei‖1 ≤ γ ‖a
g
i ‖1 , (17b)

where (ei)T and (agi )
T represent the ith row and γ ∈ [0, 1]. Thus letting maxi ‖agi ‖1 = kρ(Ag),

we have

ρ(E) ≤γmax
i
‖agi ‖1 (17c)

ρ(E) ≤kγ ρ(Ag) (17d)

Last for the mode x in question, we can say∥∥EA−1
g x

∥∥
2

=
1
λ
‖Ex‖2 ≤

ρ(E)
λ
≤ kγ ρ(Ag)

λ
(17e)
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For typical AMG problems from standard discretizations of the Poisson operator, k is small,
usually in the vicinity of 2 or 3. Thus for mid-range or high energy modes, say when
λ ∈ [ρ(Ag)/10, ρ(Ag)], the impact on θ from equation (17e) is minimal for the γ chosen here,
which are on the order 0.01.

Much of the preceding argumentation for mid-range to high-energy modes centers around
global eigenvalues, but it is important that the heuristic (17b) is row wise. This locality
implies that enforcing (17b) for a specific γ targets the locally mid-range to high energy
modes, which may or may not correspond to the global mid-range to high energy modes.

The other case concerns x as a low energy eigenmode such that ‖x‖2 = 1, but Agx ≈ 0.
Then, θ is small when

Ex ≈ 0 if Agx ≈ 0. (18a)

Since, AMG typically makes a priori assumptions about the local behavior of the near null
space, we can leverage that here as well to target (18a) as a heuristic. In particular, we
enforce accuracy for a set of vectors, B, that represent the near null space, i.e.,

AcB = AgB ⇔ EB = 0. (18b)

The standard choice for B is the constant, but could also be problem dependent, e.g., the
rigid-body modes for elasticity. For the most common case of B = 1, we guarantee (18b)
with classical AMG inspired stencil collapsing to remove the unwanted entries in Ag, so that
E1 = 0. For other cases, a more sophisticated projection based strategy is used, which we
detail later.

While this approach is based on the above heuristics, it should be noted that much
of the successful classical AMG framework, e.g., strength-of-connection and interpolation
formulas, is based on similar heuristic assumptions. Put another way, if the constant does
not adequately represent a low energy vector x locally, then the classical AMG framework in
which we operate will already be problematic.

3 Algorithm

In this section, we first describe our algorithm for finding a suitable sparsity pattern Nc
for Ac. Second, we describe the algorithm for eliminating entries in Ag based on Nc for
the case of classical AMG scalar problems. The strategy is based on classical AMG stencil
collapsing. Third, we discuss one possible generalization of our algorithm to other PDEs,
such as linearized elasticity, where the near null space of the matrix contains more than the
constant vector.

The heuristics in Section 2 guide our algorithmic choices. The process of finding the
sparsity pattern utilizes a drop tolerance that guarantees satisfaction of equation (17b),
which is the heuristic targeting accuracy in Ac for mid-range to high energy modes. The
process of stencil collapsing to eliminate entries is then done in such a way to target the
second heuristic (18b) and give Ac accuracy for the important near null space modes.

3.1 Choosing the Sparsity Pattern

The goal of the sparsity pattern choice is to ensure an adequate nonzero pattern for spectral
equivalence between Ag and Ac. We approach this problem in a two phase manner. The
first phase initializes the sparsity pattern using the matrix graph of P and the fine grid
operator A to target sufficient connections in Ac to approximate the Galerkin matrix stencil.
The second phase guaranties heuristic (17b) to more directly target spectral equivalence for
mid-range to high energy modes.
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Minimal Sparsity Pattern

Considering the first phase, we must at a minimum choose coarse grid sparsity patterns that
allow for reproducing a good approximation to the Galerkin matrix stencil. We choose

N̂c = {(i, j) such that (PTI AP + PTAPI)ij 6= 0} (19)

as the initial sparsity pattern, where PI refers to injection between the coarse and fine grids.
This initial pattern allows for important matrix entries in Ag with a small magnitude to be
preserved on coarse grids in N̂c. These entries would normally be dropped if the classical
strength-of-connection measure, which is based on magnitude, were used to compute N̂c.
Instead equation (19) uses the information (often of a geometric nature) present in the matrix
graph of A to maintain connections on the coarse grid between all fine grid distance one
C-point connections and some fine grid distance two C-point connections. (This assumes
that classical RS-AMG type interpolation and coarsening schemes are used.) So while we
will later use a collapsing scheme based on RS-AMG interpolation to eliminate entries in Ag,
the concept of strength-of-connection needed to construct Nc is different than for RS-AMG.
We note that [15] uses a similar approach in a SA setting to obtain a sparsity pattern.

To illustrate this concept, consider a simple example of grid aligned anisotropic diffusion,
−uxx − εuyy = f , discretized with the standard five-point finite-differencing stencil, depicted
by A in equation (20a). The stencil for Ag in (20a) is that yielded by one level of semi-
coarsening with RS-AMG. The stencil for Ac in (20b) is that obtained from rediscretizing
the problem on the semi-coarsened grid (i.e., no coarsening in the y-direction, while choosing
every other unknown in the x-direction). The matrix Ac provides a suitable non-Galerkin
coarse grid for Ag by virtue of being spectrally equivalent to Ag. This then yields the fact
that ‖I−A−1

c Ag‖ is bounded independent of h, or in terms of equation (8), that ‖I−AcA−1
g ‖

is bounded independent of h. However if the connections in the direction of weak diffusion
are dropped in Ac to yield Âc, the bound for ‖I − Âc

−1
Ag‖ is no longer h-independent, and

Theorem 2.1 indicates that using Âc as the non-Galerkin coarse grid will not guarantee an
h-independent two-grid method.

A :=

 −ε
−1 (2 + 2ε) −1

−ε

 , Ag :=

 − ε
4 − 3

2ε − ε
4

− 1
2 + ε

2 (1 + 3ε) − 1
2 + ε

2
− ε

4 − 3
2ε − ε

4

 , (20a)

Ac :=

 −2ε
− 1

2 (1 + 4ε) − 1
2

−2ε

 , Âc :=

 0
− 1

2 1 − 1
2

0

 , (20b)

To see this h-dependence, we do a simple derivation using the well known [5] eigenvectors
vi and eigenvalues λi of the classic second-order finite-difference operator with stencil[
−1 2 −1

]
. Letting this 1D stencil be defined on a grid with n points, the corresponding

spectrum of Ac defined on an n× n grid is

λij =
1
2
λi + 2ελj , (21a)

where the indexing i, j < n. The eigenvectors of Ac are

vij = vi ⊗ vj . (21b)

The spectrum of Âc can similarly be expressed with

Âcvij =
1
2
λivij . (21c)
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Using this knowledge of the spectra,

∥∥∥I − Âc−1
Ac

∥∥∥
2

= λmax

((
I − Âc

−1
Ac

)T (
I − Âc

−1
Ac

))1/2

(21d)

= max
ij

∣∣∣∣1− 1
2λi + 2ελj

1
2λi

∣∣∣∣ (21e)

= max
ij

4ελ−1
i λj (21f)

. 4ε
(

4− h
h

)
. (21g)

In summary, h-independence for θ is achieved when the closest small magnitude entries in
the direction of weak diffusion are in the stencil for Ac. We avoid the h-dependent sparsity
pattern of Âc by using N̂c from (19) as the minimal sparsity pattern, which for this example
is

N̂c :=

 ∗
∗ ∗ ∗
∗

 . (22)

If only the classical concept of strength-of-connection were employed to determine N̂c based
on Ag, then the pattern for Âc would be chosen. It is also important that the pattern N̂c
does not include the longer distance diagonal connections in Ag of small magnitude, which
are not necessary for a spectrally equivalent coarse grid. In fact, it is the elimination of such
entries that allows for stencil size reductions in our experiments.

Improving the Sparsity Pattern

Next, we improve N̂c by enforcing the heuristic (17b) through the following procedure, in
order to target accuracy for mid-range to high energy modes. Let the set of neighbors of i in
Nc (i.e., the allowed nonzeros in row i) be

Nci = {j, such that the tuple (i, j) ∈ Nc}.

The procedure then begins by initializing the pattern Nc with the pattern of Ag. Entries are
then removed from Nc, starting with the smallest in magnitude, until any further removal of
entries would violate

2
∑
j /∈Nci

|agij | ≤ γ
∑
j

|agij |. (23)

Assuming classical stencil collapsing will be done to compute final matrix entry values (as
outlined in Section 3.2), this procedure guarantees (17b) for the final Ac, even before the
stencil collapsing step. The factor of 2 essentially represents the change made to Ag when
dropping an entry, plus the maximum change to Ag possible when collapsing that entry
to the allowed nonzero entries. Last, we ensure the minimal sparsity pattern from (19),
by taking the union of Nc and N̂c, i.e., we replace Nc with Nc

⋃
N̂c. Algorithm 1 gives a

detailed description of this process. If a symmetric pattern is desired, Nc can be symmetrized,
such that if (i, j) ∈ Nc, then (j, i) is added to the set Nc as well.

3.2 Eliminating Entries in Ag for Scalar Problems

The goal when eliminating entries in Ag to obtain Ac is to not change the action on the near
null space of Ag. We rely on the sparsity pattern choice from Section 3.1 to avoid changing
the action on other modes. We eliminate entries in Ag with a classical AMG stencil collapsing
based approach, because this approach has been used for decades [4, 12, 16] to develop
interpolation formulas which are accurate for the constant based near null space modes
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Algorithm 1: ComputeSparsity(Ag, P, PI)

1 Input: Ag {Galerkin Operator}
2 P {Interpolation operator}
3 PI {Injection operator}
4

5 Nc ← ∅
6 for (i, j) such that agij 6= 0 do
7 Nc ← Nc

⋃
{(i, j)} {Initial pattern}

8

9 for i = 1 to nrows(Ag) do
10 Initialize set K: Km is index of mth smallest off-diagonal nonzero in row i
11 for m = 1 to |K| do
12 Nci ← Nci \ Km {Tentatively remove entry Km }
13 if 2

∑
j /∈Nci

|agij | ≤ γ
∑
j |a

g
ij | then

14 continue {Equation (17b) Satisfied }
15 else
16 Nci ← Nci

⋃
Km {Equation (17b) Violated}

17 break
18

19 for (i, j) such that (PTI AP + PTAPI)ij 6= 0 do
20 Nc ← Nc

⋃
{(i, j)} {Union with minimal pattern}

21 return Nc

critical for classical scalar problems. In other words, this lumping procedure is (roughly
speaking) as effective at preserving the near null space as classical AMG interpolation is
accurate for the near null space.

The dropping strategy begins by initializing Ac as a copy of Ag. Then, each acij 6= 0 such
that (i, j) /∈ Nc is eliminated from Ac. The stencil collapsing strategy is to eliminate acij by
adding a fraction of that entry to each of j’s strongly connected neighbors in row i. The
fractional lumping is done such that the row sum does not change and the local constant
based near null space is thus unchanged. We begin by letting S be the strength-of-connection
matrix defined by the classical AMG measure with respect to Ag, and define the neighbors
of j in S as

Nsj = {k, such that sjk 6= 0}. (24a)

Next, we find U , which represents the strong connections of j shared by the nonzero pattern
of row i. This set U represents the unknowns to which acij will be lumped.

U = Nsj
⋂
Nci. (24b)

If strong neighbors are found (U 6= ∅), we avoid changing the diagonal and remove i from U .
This avoids changing the center of each row’s Gershgorin disc, if possible. We then compute
the fractions by which the entry will be lumped, and carry out the fractional lumping such
that the near null space is preserved and E1 = 0:

σ =
∑
k∈U

|sjk| (24c)

acik ← acik + (|sjk|/σ) acij for k ∈ U. (24d)
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Similar to classical stencil collapsing, if no strong neighbors are found (U = ∅), the entry is
lumped to the diagonal. After all entries are eliminated, the matrix Ac may be symmetrized,

Ac ← 0.5(ATc +Ac), (24e)

followed by diagonal lumping to preserve row sum,

acii ← acii +
∑
j

agij −
∑
j

acij . (24f)

Algorithm 2 describes in detail this stencil collapsing algorithm.

Algorithm 2: NonGalerkin(Ag, S,Nc)
1 Input: Ag {Galerkin Operator}
2 S {Strength-of-connection operator based on Ag}
3 Nc {Desired sparsity pattern}
4

5 Ac ← Ag {Initialize with Galerkin coarse grid}
6 for i = 1 to nrows(Ac) do
7 for j such that aij 6= 0 do
8 if j /∈ Nci then
9 U ← Nsj

⋂
Nci

10 if U = ∅ then
11 acii ← acii + acij {No neighbors, lump to diagonal}
12 else
13 U ← U \ {i} {Avoid changing diagonal}
14 σ =

∑
k∈U |sjk|

15 for k ∈ U do
16 acik ← acik + (|sjk|/σ) acij {Lump to neighbors}
17 acij ← 0
18 else
19 Do nothing
20 Ac ← 0.5(ATc +Ac) {Symmetrize}
21 for i = 1 to nrows(Ac) do
22 acii ← acii +

∑
j a

g
ij −

∑
j a

c
ij {Preserve row sum}

23 return Ac

While the stencil collapsing process preserves the row sum of the operator, the preservation
of symmetry in line 20 changes this row sum. Thus, line 22 is required to modify the diagonal
and preserve the row sum. The values added to the diagonal in line 22 are typically small,
but necessary for maintaining accuracy for the near null space of the operator. From a
different point of view, this symmetrization step can be thought of as a way of symmetrically
dropping entries, where lines 15 and 16 are replaced with

for k ∈ U do acik ← acik + (1/2)(|sjk|/σ)acij (25a)

acki ← acki + (1/2)(|sjk|/σ)acij , (25b)

followed by a fix up step that lumps to the diagonal to preserve row sum.

Remark 1. The stencil collapsing approach of Algorithms 1 and 2 does preserve definiteness
for M-matrices. An M-matrix is a common multigrid operator where the diagonal is positive,
all off-diagonals are non-positive, and row sums are non-negative. Thus by a Gershgorin
disc argument, M-matrices are at least positive semi-definite. When the proposed approach
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operates on an M-matrix, all off-diagonals remain non-positive (off-diagonals are changed
only by adding a negative value); the diagonal remains positive; and the row sum is unchanged.
Thus the resulting Ac is still an M-matrix and hence definite. If the symmetrization step is
done, then Ac is SPD. If the interpolation method chosen preserves the M-matrix property
on coare grids, then the proposed method will still yield an SPD preconditioner. However for
general matrices, there is no way to guarantee that the proposed method preserves definiteness.
This necessitates the use of more general Krylov methods such as GMRES or BiCGStab,
when using AMG as a preconditioner.

In summary, this algorithm removes entries from a coarse grid operator in a way that
preserves the spectrum for constant like near null space modes. The algorithm relies on the
choice of Nc to guarantee that the resulting coarse grid is accurate for mid-range to high
energy modes. Additionally, the algorithm relies primarily on local row wise computations
that require little communication, making the method well suited for the parallel setting.

3.3 Eliminating Entries in Ag in a General Setting

In this section, we consider the case where the matrix requires stencil collapsing that preserves
multiple modes in B, i.e., we must enforce heuristic (18b) when B has multiple columns.
The motivation is to extend the proposed method to problems such as elasticity, where the
near null space consists of multiple vectors, e.g., the rigid-body modes. We first present
classical stencil collapsing in terms of the general approach, and then discuss one way to
extend this perspective to the multiple mode case.

Consider Figure 2, where the matrix graph relative only to unknown 1 is depicted, and
a local ordering is used. In the picture, unknowns 5 and 6 are to be eliminated from the
stencil, and collapsed to unknowns 2, 3 and 4. The gray dotted lines and associated weights
represent strength-of-connection couplings between 5 and 6 relative to their neighbors 2,
3 and 4. The strength-of-connection couplings have been normalized such that the two
connections for unknown 5 sum to 1, and likewise for unknown 6.

1

2

3

6

5

2/3

1/2

1/2

1/3

4

Figure 2: Stencil Collapsing Example

Let the set of off-diagonal unknowns that are maintained in row i = 1 be denoted by

Nci = {2, 3, 4}, (26)

and the set of off-diagonal unknowns to be eliminated be denoted by

χi = Ngi \ Nci = {5, 6}, (27)

Then the corresponding generalization for classical stencil collapsing can be represented with
a local interpolation like operator Gi, that operates only on nonzero entries, i.e.,

[
acii (aci |Nci)

T
]

=
[
agii (agi |Nci)

T (agi |χi)
T
] 1 0

0 I
0 Gi

 (28a)
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where aci |Nci is the vector of off-diagonal entries after stencil collapsing, acii = agii, and

Gi =
[
1/2 0 1/2
2/3 1/3 0

]
. (28b)

Note that all other entries in row i of Ac are zero. The entry (Gi)0k represents the normalized
strength-of-connection entry between unknowns 5 and k, and (Gi)1k likewise corresponds
to unknown 6. More precisely, recall the definition of U ← Nsj

⋂
Nci for each row i from

Algorithm 2, and define Gi as

Gi ∈ R|χi|×|Nci| (29a)

(Gi)uv =
s(χi)u,(Nci)v∑
k∈U |s(χi)u,k|

(29b)

In summary, the operator Gi interpolates from unknowns in Nci to unknowns in χi
using normalized strength-of-connection values that interpolate between strongly connected
unknowns, and preserve near null space mode(s). For this example, all row sums of Gi
equal 1. In general, classical stencil collapsing will always result in a row sum of 1 in Gi.

Remark 2. Equation (28a) defines the general case of stencil collapsing, but it does not
allow for entries to be lumped to the diagonal as in the Algorithm 2. This can be observed
because the first column is all zero, except for the (1,1) entry. This was an engineering choice
meant to protect the diagonal entry from large changes during the process of fitting multiple
modes into the span of Gi, which can cause relatively large changes to entries.

3.3.1 Accommodating Multiple Near Null Space Modes

We now present the generalized stencil collapsing case, where Gi is post-processed to
accommodate multiple near null space modes. This set of vectors B is usually specified on
the finest level, and then transferred to each coarse level with the restriction operator PTI B.
Multigrid methods typically require a set of such modes for construction of interpolation.
Even classical AMG methods implicitly assume B = 1 by virtue of the interpolation formulas
which are explicitly designed to preserve the constant.

Our strategy updates the Gi from classical stencil collapsing in a least-squares fashion so
that Gi interpolates multiple vectors B accurately. The intention is that the minimal update
results in a Gi with weights that still favor strong connections. More precisely, we update
Gi in a minimal 2-norm sense to fit B and satisfy

GiB|Nci
= B|χi

, (30a)

where

B|Nci
= Buv for u ∈ Nci and v ∈ {0, 1, 2, ...,ncols(B)} (30b)

B|χi
= Buv for u ∈ χ and v ∈ {0, 1, 2, ...,ncols(B)}. (30c)

This property guaranties that the action of AcB = AgB. To see how (30a) accomplishes
this, take equation (28a) and right multiply by[

bTi
B|Nci

]
, (31)

using the identity (30a). The quantity bTi represents B restricted to the ith row. We now
describe in Algorithm 3 the generalized approach to stencil collapsing.

In addition to Remark 2, there are some important algorithmic notes to make. When
solving PDE systems, such as elasticity, where an unknown j belongs to only one of many
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Algorithm 3: Generalized NonGalerkin(Ag, S,Nc, B)

1 Input: Ag {Galerkin Operator}
2 S {Strength-of-connection operator based on Ag}
3 Nc {Desired sparsity pattern}
4 B {Near null spacemodes for Ag, ordered in importance}
5

6 Ac ← Ag {Initialize with Galerkin coarse grid}
7 for i = 1 to nrows(Ac) do

8 k ← max
(⌊
|Nci|

2

⌋
− 2, 1

)
9 Compute Gi {Equation (29)}

10 F ← B|χi −GiB|Nci {Compute update to Gi}
11 for j = 1 to nrows(Gi) do
12 Let f and g be row j of F and Gi, respectively.
13 u← argminu ‖(B|Nci)TuT − fT ‖22
14 g← g + u

15

[
acii (aci |Nci

)T
]

=
[
agii (agi |Nci

)T (agi |χi
)T
] 1 0

0 I
0 Gi

 {Equation (28a) }

16 aci |χi ← 0 {Zero out entries not in pattern}
17 return Ac

PDEs, it is critical to limit the collapsing to occur between unknowns in the same PDE.
This can easily be implemented in Algorithm 3 by pre-filtering the strength matrix S with

sij ← 0 if PDE num(i) 6= PDE num(j), (32)

where the function PDE num() returns the PDE number (say 0, 1 or 2) for an unknown. In
order to compute the PDE number for a coarse unknown, we utilize the C/F splitting present
at each level to find the corresponding fine grid unknown for each coarse grid unknown.

Remark 3. We have observed issues with over fitting and the computation of Gi. As an
example, let Gi have 4 nonzeros per row, and B contain 4 or 5 vectors, then the process of
computing Gi to exactly preserve all modes is ill conditioned, i.e., small changes to B can
result in large changes to Gi. We have observed this phenomenon for the model 2D rotated
anisotropic diffusion problems in the results section, when B equals the constant, linears and
quadratics. Here, the coefficients computed for Gi would sometimes vary by 2 or 3 orders
of magnitude. The resulting coarse grid stencil became inaccurate, and the overall AMG
cycle deteriorated or diverged as a result. As a solution, we take only the first ki columns of
B when computing Gi. It is assumed that B is ordered in importance, so that the first ki
vectors are the most critical ones. We choose ki to be significantly smaller than the number
of nonzeros per row in Gi, or k = |Nci|/2, where |Nci| is the number of unknowns in Nci.
Thus, the number of modes in B used to compute Gi can change with i. While this strategy
is purely an engineering choice, it is a reasonable number of modes to choose from B to
avoid over fitting.

4 Evaluating the Accuracy of the Stencil Collapsing Ap-
proach

In this section, we describe a near optimal non-Galerkin coarse grid operator, and compare it
to our method for model diffusion problems. Let (aci )

T be the ith row of Ac and let λj and
vj be the eigenvalues and eigenvectors of Ag. Below, we derive an upper bound for θ in (8)
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in terms of aci , λj and vj . In (33d), we write x =
∑
j αjvj , with αj ∈ [0, 1] and

∑
j |αj | = 1.

In (33e), we can reverse the order of the min-max problem because it is quadratic in αj and
acij . A useful upper bound on the minimal θ is then

θ2min = min
Ac∈Nc

∥∥(I −AcA−1
g )
∥∥2

2
(33a)

= min
Ac∈Nc

max
‖x‖2=1

∥∥(I −AcA−1
g )x

∥∥2

2
(33b)

= min
Ac∈Nc

max
‖x‖2=1

∑
i

((x)i − (aci )
TA−1

g x)2 (33c)

= min
Ac∈Nc

max
‖α‖2=1

∑
i

∑
j

αj(vij − λ−1
j vTj aci )

2

(33d)

= max
‖α‖2=1

min
Ac∈Nc

∑
i

∑
j

αj(vij − λ−1
j vTj aci )

2

(33e)

= max
‖α‖2=1

∑
i

min
ac

i∈Nci

∑
j

αj(vij − λ−1
j vTj aci )

2

(33f)

≤
∑
i

min
ac

i∈Nci

∑
j

(
vij − λ−1

j vTj aci
)2
. (33g)

To compute our near optimal Ac, we note that the aci which satisfy equation (33g) and
thus ultimately bound θmin are equivalent to

argmin
ac

i∈Nci

∥∥∥∥∥∥∥∥∥


vi1
vi2
...

vin

−


(1/λ1)(vT1 )|Nci

(1/λ2)(vT2 )|Nci

...
(1/λn)(vTn )|Nci

 (aci )|Nci

∥∥∥∥∥∥∥∥∥
2

2

. (34)

Hence, the near optimal Ac is simply constructed by solving (34) for each row i.
To use this tool, we compared our method to the near optimal Ac on a variety of model

2D diffusion problems which yielded small enough matrices that the computation of the near
optimal Ac was possible. We asked two questions. One, is the two-level AMG convergence
rate significantly better with the near optimal method when compared to the proposed
approach? Two, what sparsity pattern is necessary to achieve equivalent performance to the
Galerkin approach when using the near optimal method?

As an example, consider the Q1 bilinear finite element discretization on a regular
structured grid with Dirichlet boundaries of the rotated anisotropic diffusion equation

−(c2 + εs2)uxx − 2(1− ε)cs uxy − (εc2 + s2)uyy = f, (35)

where ε = 0.001, c = cos(θ), s = sin(θ) and θ is the angle of rotation. We choose the angle
θ = π/4 (which is a particularly difficult angle for the stencil collapsing approach, on a
15× 15 grid). The stencil at the center point on the first coarse grid is given in Figures 3a,
3b, 3c and 3d for the cases of the Galerkin approach, and for the proposed stencil collapsing
approach with γ = 0.03, γ = 0.1 and γ = 1.0. The asymptotic convergence rates for Figures
3a, 3b, 3c and 3d are 0.23, 0.23, 0.40 and 0.47, respectively. The corresponding convergence
rates and stencils for the near optimal approach are nearly identical and are hence omitted.
The one exception was for γ = 1.0, where the near optimal approach did yield a better
convergence rate and slightly different coefficient values in the cross-stream direction. Thus,
the conclusion is two-fold. One, that the longer distance connections present in Figure 3b,
but not present in Figures 3c and 3d, are necessary to regain the performance of the Galerkin
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(a) Galerkin (b) Non-Galerkin γ = 0.03

(c) Non-Galerkin γ = 0.1 (d) Non-Galerkin γ = 1.0

Figure 3: Center point stencils for first coarse grid operators, comparing Galerkin and stencil
collapsing based non-Galerkin for various γ.

approach when using either the near optimal or stencil collapsing approach. Two, the
coefficients computed by stencil collapsing yield similar performance to that achieved by
fitting the eigenvectors in the near optimal approach.

A number of different angles and finite difference approximations for isotropic and
anisotropic examples were explored with similar results. So, this tool led us to conclude that
in general a broader sparsity pattern than RIAP was needed and that γ = 0.03 yielded such
a sparsity pattern for the diffusion problems examined. This tool also allowed us to conclude
that the coefficients computed by stencil collapsing are as good as the near optimal approach
for smaller values of γ.

5 Results

In this section, we examine the numerical performance of the method for a variety of diffusion
test problems and two 3D elasticity problems. In general, the tests use a V-cycle of RS-AMG
to accelerate GMRES with a relative residual tolerance of 10−8. The tests also maintain
identical solver parameters and only toggle the non-Galerkin method on and off, so that the
standard Galerkin approach and the new method can be fairly compared. The serial tests
were done using the PyAMG [2] package, while the parallel tests were done using the hypre
[8] package.

5.1 Scalar Diffusion Results

In this section, we examine the proposed non-Galerkin method for scalar diffusion problems.
V(2,2) cycles of classical RS-AMG using weighted-Jacobi are used to accelerate GMRES
with a relative residual tolerance of 10−8. No post-processing symmetrization of the coarse
grid operator is used, because it did not noticeably change convergence. For all of the test
problems, 4 consecutive refinements are considered for increasing matrix sizes of roughly
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16 000, 64 000, 256 000 and 1 000 000. This is true, even for the 3D problems.
The tables of results contain the following columns. “Max Stencil” reports the maximum

stencil size over all levels, and is used as a proxy for the amount of communication induced
by the AMG hierarchy. The term ρAMG refers to the convergence rate. “Op. Comp.” refers
to operator complexity, which is the total number of nonzeros stored in the hierarchy, divided
by the number of finest level nonzeros. “Work” refers to work per digit of accuracy, i.e., the
amount of work, in matrix-vector multiplies, required to reduce the residual by one order of
magnitude. Work is particularly useful when comparing methods with differing operator
complexities. A variety of γ values are experimented with, including the case of γ = 1.0,
which is equivalent to using N̂c as the sparsity pattern, and γ = 0.0, which is equivalent to
using the Galerkin coarse grid approach. The overall goal of the tests is to reduce stencil
size and hence parallel communication while only negligibly affecting AMG convergence.

In 2D, we consider the rotated anisotropic diffusion equation (35). The discretizations
considered are standard second-order finite differencing and Q1 bilinear finite elements on
regular structured grids with Dirichlet boundaries. Experiments are run for a variety of θ
values, with worst case angles occurring for roughly θ ≈ 2π/16, which is the test case we
choose to show in Table 1. While this is a worst case, it is still representative of other angles,
in that as γ decreases to [0.01, 0.03], the proposed approach attains similar convergence and
nearly identical work units to the Galerkin approach (γ = 0.0). Overall, the non-Galerkin
approach is robust for these problems, and provides a reduction in operator complexity and
stencil size.

γ refinement ρAMG Op. Comp. Work Max stencil

1.0 0 0.28 2.3 20 16
1 0.44 2.3 25 16
2 0.51 2.3 32 16
3 0.56 2.3 36 17

0.03 0 0.31 2.3 17 16
1 0.39 2.3 23 16
2 0.46 2.3 28 16
3 0.50 2.3 31 16

0.01 0 0.28 2.5 19 21
1 0.31 2.6 21 22
2 0.35 2.6 23 21
3 0.37 2.6 24 22

0.0 0 0.26 2.7 19 33
1 0.28 2.7 20 33
2 0.30 2.8 21 33
3 0.32 2.8 23 33

Table 1: 2D non-Galerkin results for various γ, rotated anisotropic diffusion by angle of θ = 2π/16,
AMG preconditioning GMRES.

The next set of experiments examine 3D diffusion operators. We examine the problem

uxx + εyuyy + εzuzz = f (36)

using classic second-order 7-point finite differencing approximations on regular grids and also
linear tetrahedral discretizations on unstructured isotropic meshes. The PDE coefficients
considered are εy = 1.0, εz = 0.001 and εy = 1.0, εz = 1.0.

The results are broadly similar, so we give a representative set in Table 2 for the linear
tetrahedral example and isotropic coefficients (εy = 1.0, εz = 1.0). The non-Galerkin
approach is robust, preserves the Galerkin AMG convergence rate and yields a stencil size
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reduction of 50%. One important note is that the operator complexity reduction is not always
as dramatic as depicted in Table 2. For instance for the 7-point finite-differencing Poisson
operator, the operator complexity reduction is only from 2.9 to 2.8, but the non-Galerkin
approach still enjoys a roughly 50% stencil size reduction.

γ refinement ρAMG Op. Comp. Work Max stencil

0.03 0 0.18 1.5 8 52
1 0.24 1.6 10 76
2 0.30 1.8 14 81
3 0.36 1.9 17 81

0.0 0 0.18 1.6 8 73
1 0.24 1.8 11 91
2 0.30 2.2 17 150
3 0.38 2.6 24 174

Table 2: 3D non-Galerkin results for two γ choices, isotropic diffusion, AMG preconditioning
GMRES.

5.2 Elasticity Results

We next examine the proposed approach for isotropic linearized elasticity problems, where
B ∈ Rn,6 and is equal to the six rigid body modes. Linearized elasticity is defined by

−div
(
λ tr

((
∇u +∇uT

)
/2
)
I + µ

(
∇u +∇uT

))
= f, (37)

where λ and µ are the Lamé parameters, I is the identity matrix and tr() is the trace function.
The GetFem++ package [11] is used to discretize. The test problems examined include
an iron bar attached to the left wall with a downward force applied to the top of the bar.
The iron bar is defined on the region [0, 4]× [0, 1]× [0, 1] and discretized with parallelpiped
elements. The other test problem is a steel tripod corresponding to the mesh in Figure 4.
Here, the tripod is discretized using linear tetrahedral elements and a downward external
force is applied to the top of the tripod.

Figure 4: Example tetrahedral tripod mesh.

The solver setup is different than in Section 5.1, because the interpolation operators for
RS-AMG only capture the constant vector. Hence, the experiments with RS-AMG show
no performance difference when comparing Algorithm 2 with Algorithm 3 and B equal the
six rigid-body modes. Essentially, if PTAP does not accurately represent the rigid-body
modes, then the stencil collapsing approach does not need to account for them. So while
the non-Galerkin RS-AMG approach applied to the elasticity test problems is effective,
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we consider a smoothed aggregation (SA) approach [10] instead, that allows span(P ) to
capture all six of the rigid-body modes, and hence PTAP accurately represents all six of the
rigid-body modes. We also choose a SA approach to show the generality of the proposed
non-Galerkin method to most AMG methods.

While SA generally does not associate C-points with the coarse grid, this set of unknowns
can be obtained by associating a root-node [10] with each aggregate. This root node is
usually the aggregate seed during the greedy aggregation process [17]. These seeds then form
the C-point sets and corresponding PI operators.

The convergence results are given in Table 3 for the tripod example, with the results
for the iron bar being similar, and therefore omitted. Three consecutive refinements are
considered for increasing matrix sizes of roughly 3 000, 17 000 and 109 000. The second
column denotes the values for B chosen, with “RBM” standing for the six rigid-body modes,
and B = 1 representing the standard stencil collapsing of Algorithm 2. The choice of B = 1
is similar to collapsing with the three displacement rigid-body modes, which likely explains
why Algorithm 2 performs well.

The proposed approach matches the convergence rate of the Galerkin approach for
γ = 0.03, with a significant drop in maximum stencil size. Interesting, for smaller values of
γ, such as γ = 0.03, the results are nearly identical for B equalling the six rigid-body modes
or the constant. For the very restricted sparsity patterns of γ = 1.0, collapsing with respect
to the rigid body modes becomes important, and even allows for regaining the original work
per digit of accuracy numbers for the Galerkin approach.

γ B refinement ρAMG Op. Comp. Work Max stencil

1.0 1 0 0.45 1.2 12 42
1 0.50 1.2 16 72
2 0.64 1.2 24 97

1.0 RBM 0 0.44 1.2 12 42
1 0.48 1.2 14 72
2 0.54 1.2 18 97

0.03 1 or RBM 0 0.40 1.3 11 56
1 0.44 1.4 15 138
2 0.48 1.5 18 245

0.0 *** 0 0.39 1.4 11 69
1 0.43 1.5 16 182
2 0.47 1.6 20 346

Table 3: Elasticity non-Galerkin results for various γ and collapsing strategies, AMG preconditioning
GMRES.

5.3 Parallel Results

In this section, we present parallel results for the simple scalar 7-point 3D isotropic diffusion
finite difference operator with Dirichlet boundary conditions. The goal is to demonstrate
the potential of the algorithm to speedup parallel AMG solve phase times. We therefore
choose the simple 7-point model problem that nonetheless yields an unscalable growth in
stencil size. The parallel stencil collapsing is identical to the serial algorithm, with a few
exceptions. The collapsing is done with a binary strength-of-connection matrix (i.e., each
strong connection has a value of 1.0 and each weak connection has a value of 0.0). This is
done because binary strength-of-connection matrices is what is currently available in hypre.
Implementing the complete stencil collapsing approach from Algorithm 2 using standard
strength matrices is future work.



Non-Galerkin Coarse Grids 19

101 102 103 104

Number of Cores

1.00

1.05

1.10

1.15

1.20

1.25

S
p

ee
d

u
p

=
G

al
er

ki
n

/N
on

-G
al

er
ki

n

101 102 103 1040.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e

Non-Galerkin Time

Galerkin Time

Speedup

(a) Best Current Parallel AMG

101 102 103 104

Number of Cores

1.4

1.6

1.8

2.0

2.2

2.4

2.6

S
p

ee
d

u
p

=
G

al
er

ki
n

/N
on

-G
al

er
ki

n

101 102 103 1040.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e

Non-Galerkin Time

Galerkin Time

Speedup

(b) Classical Parallel AMG

Figure 5: Speedup and AMG solve phase timings comparing non-Galerkin AMG and Galerkin AMG
on machine with fast network.

The parallel studies carried out are weak scaling tests with 25,000 unknowns per core on
two different machines, one with a fast InfiniBand QDR interconnect and the other with
a slow InfiniBand DDR interconnect. V(1,1) cycles using hybrid Gauss-Seidel are used to
precondition GMRES to within a relative residual tolerance of 10−8. We also explore two
different AMG scenarios, one that uses a “best practices” set of parameters (e.g. aggressive
coarsening [14] and extended interpolation [13]) and the other that uses classical parallel
AMG parameters (e.g. classical modified interpolation and Falgout coarsening [7] ). We
report speedup and time to solution for the AMG solve phase in order to compare the
Galerkin and non-Galerkin approaches. The stencil size reductions are similar to that
reported in serial, and are therefore omitted here. Yet, it is important to note that these
stencil size reductions are what translate into the reduced solve phase times.

Figures 5a and 5b show the speedup and timings for the best practices scenario and
classical parallel AMG scenario, respectively, on the machine with a fast interconnect. The
speedup is on the left axis for the dotted line, and the time to solution for the AMG solve
phase is on the right axis for the two solid lines depicting the Galerkin and non-Galerkin
approaches. For the best practices scenario, there is a speedup of 15–20%, but for the
classical parallel AMG scenario, the speedup grows to 250%. Figures 6a and 6b depict the
similar results for the machine with a slow interconnect, but with more pronounced speedups
of 150% and 400% for the best practices and classical parallel AMG scenarios, respectively.

These results are encouraging, in part because the speedup grows with number of cores.
Thus, we expect this approach to yield even better speedups when moving to current Petascale
machines (106 cores) and also to next generation exascale machines (106–109 cores).

Moreover, the results raise the question whether the current best practices in AMG can
be avoided altogether, in favor of a more classical AMG approach that leverages non-Galerkin
coarse grids. For instance, if the overall time is compared between the best practices and
classical parallel AMG scenarios for each machine, it is observed that the non-Galerkin
approach for the classical scenario is competitive with the Galerkin approach for the best
practices scenario. This rethinking of parallel AMG is attractive because the current best
practices for reducing stencil size and communication (i.e., aggressive coarsening and extended
interpolation) also worsen the AMG convergence rate, whereas non-Galerkin coarse grids
target the same reduced stencil size and associated reduced communication, but with no
deterioration in the AMG convergence rate. For example, our parallel tests for a 27-point
finite element discretization of the Poisson problem already show the fastest AMG solve
phase time is for classical parallel AMG coupled with the non-Galerkin approach. Regardless
of which AMG scenario used, the non-Galerkin approach provides a parallel performance
benefit.
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Figure 6: Speedup and AMG solve phase timings comparing non-Galerkin AMG and Galerkin AMG
on machine with slow network.

6 Comments/Conclusions

In conclusion, the proposed non-Galerkin approach is an effective method at reducing coarse
grid stencil size and parallel communication, while having a negligible affect on the AMG
convergence rate for the problems considered here. In particular, the method relies primarily
on row wise computations in parallel, thus making it a relatively inexpensive method with
respect to communication. Additionally, as indicated by our experiments, the proposed
method is applicable to most AMG codes, include classical RS-AMG and SA.

There are some outstanding issues, including the importance of maintaining symmetry
and definiteness on coarse grids. While theoretically attractive, we have not observed
maintenance of symmetry being critical to performance, even out to 150 million unknowns
in parallel. However, we will maintain this option in our code as we continue experiments on
more real world test problems. Maintaining definiteness on coarse grids, outside of the case
of M-matrices, will continue to be a future research issue.
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